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Spatial correlations in sheared isothermal liquids for both elastic and granular cases are theoretically inves-
tigated. Using the generalized fluctuating hydrodynamics, correlation functions for both the microscopic scale
and the macroscopic scale are obtained. We find the existence of long-range correlations obeying power laws.
The validity of our theoretical predictions has been verified from molecular-dynamics simulation.
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I. INTRODUCTION

Liquids consist of assemblies of many particles. There is
long history of study of molecular liquids, which consist of
nondissipative simple molecules �1,2�. Recently, there has
been a rapidly growing interest in granular liquids, which are
made of granular assemblies, i.e., dissipative macroscopic
particles �3–18�. Although a molecular liquid is fluctuated
around an equilibrium state, the absence of the equilibrium
state of granular assemblies makes granular materials unlike
usual materials �19�. Nevertheless, we have recognized that
statistical properties and hydrodynamic behaviors of moder-
ate dense and nearly elastic granular gases are considerably
well understood from the analysis of the kinetic theory
�9,13,20–24�.

Boltzmann-Enskog theory is often used in describing
moderate dense gases including granular assemblies, where
the assumption of molecular chaos is used �9,20–24�. In spite
of the success of qualitative description of hydrodynamic
behaviors based on Boltzmann-Enskog theory, significant
roles of correlations have lately been recognized. Indeed, it is
well known that correlated collisions cause significant differ-
ences in constitutive equations even in equilibrium gases. In
particular, recently a number of papers on long-time tails in
current correlation functions for granular liquids have been
published, which are directly related to the transport coeffi-
cients �11,12,15,16,18,25–27�. On the other hand, we know
the existence of long-range correlations in sheared elastic
fluids �28–30� and heat conduction systems �31–37�. The
existence of a similar long-range correlation has been ob-
served even in a simulation of sheared granular fluids �38�.
In spite of the indication of the existence of the long-range
correlations in sheared fluids, we do not have any consistent
theory in describing a structure factor for both the particle
scale and the hydrodynamic scale. Indeed, a theoretical pre-
diction of spatial correlations in the molecular scale for rela-
tively dense liquids under a shear is not consistent with the
long-range correlations �39�. Thus, we still do not understand
the details of spatial correlations even in the case of molecu-
lar liquids.

We often use the mode-coupling theory �MCT� in describ-
ing dense liquids �40–42�. Even when we are interested in

sheared dense granular liquids, the framework of MCT can
be used �17�. However, MCT is not a closed theory, because
it needs to determine the structure factor by another method.
Thus, to obtain the structure factor or the pair-correlation
function is an important issue for the description of dense
granular liquids.

The purpose of this paper is, thus, to clarify the spatial
correlation functions for sheared isothermal liquids. Based
on the generalized fluctuating hydrodynamics �43,44�, we
will demonstrate that the long-range correlation obeying a
power law is consistent with the short-range structure ob-
tained by a liquid theory. In the next section, we will sum-
marize the outline of the generalized fluctuating hydrody-
namics. In Sec. III, we will show properties of a set of
linearized equations around a uniform shear flow �USF�
based on the generalized fluctuating hydrodynamics. In Sec.
IV, we will calculate the spatial correlation functions and
their asymptotic forms in the long-range limit. In Sec. V, we
will compare our results with those of the molecular-
dynamics simulation. In Sec. VI, we will discuss and con-
clude our results. In Appendix A, we summarize the form of
the pair-correlation function g0�r ,e� for homogeneous un-
sheared states obtained by Lutsko �6�. In Appendix B, we
briefly summarize the transformation between the Cartesian
coordinate and the oblique coordinate. In Appendix C, we

present the explicit form of C̃nn�k�, which is the Fourier
component of the density correlation. In Appendix D, we

show the explicit form of C̃pp�k�, which is the Fourier com-
ponent of the momentum correlation. In Appendix E, we

evaluate the asymptotic form of a function �̄ j�r�, which is
needed for the calculation of correlation functions.

II. GENERALIZED FLUCTUATING HYDRODYNAMICS

We consider three-dimensional systems consisting of N
identical smooth and hard spherical particles confined in the
volume V=L3 under a shear flow with the shear rate �̇, where
each particle has mass m and diameter �. The particles col-
lide instantaneously with each other by a restitution constant
e that is less than unity for granular particles and equal to
unity for molecular liquids. Let us assume that the restitution
coefficient e is a constant.

The spatial correlations in sheared fluids are investigated
by using the fluctuating hydrodynamics �28–30,38�, which*Present address.
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can be used for the description of hydrodynamic behaviors.
However, it is possible to generalize the fluctuating hydrody-
namics that can cover the scale around the particle diameter.
The generalized hydrodynamic equations �43–46� for iso-
thermal liquids characterized by a uniform temperature T are
given by

�tn + � · �nu� = 0, �1�

�tu� + u���u� +
1

m
��� +

1

mn
������

D + ���
R � = 0, �2�

where n and u� are the number density and �-component of
the velocity field, respectively. Here, we have introduced the
generalized chemical potential or the effective pressure

� = T�ln n −� dr�C�r − r�,e,�̇�	n�r�,t� + ¯ � , �3�

where C�r−r� ,e , �̇� is the two-particle direct correlation
function, which satisfies nC�k ,e , �̇��1−S�k ,e , �̇�−1 with the
structure factor S�k ,e , �̇�. ���

D �r , t� is the viscous stress ten-
sor given by

���
D �r,t� = −� dr��
�r − r�,e�	�̇���r�,t� + �̇���r�,t�

−
2

3
�̇���r�,t�	��
 − ��r − r�,e��̇���r�,t�	��� ,

�4�

where �̇���r , t�����u��r , t�+��u��r , t�� /2. ���
R �r , t� is the

random part of the stress tensor satisfying ���
R �r , t��=0, and

���
R �r,t���	

R �r�,t��� = 2T	�t − t���
�r − r�,e�����	

+ ��r − r�,e�	��	�	� �5�

with ���	��	��	�	+	�		��−2	��	�	 /3. Here, we have
used Einstein’s sum rule on the Greek subscript. The gener-
alized shear viscosity 
�r ,e� and the generalized bulk vis-
cosity ��r ,e� are represented by 

1
*�k ,e�, 

2
*�k ,e� and En-

skog’s mean free time

tE �
1

4�n0�2g0��,e�
�m�

T
�1/2

�6�

with the radial distribution function g0�� ,e� at contact as


1
*�k ,e�= �mn0�2tE

−1�−1���k ,e�+4
�k ,e� /3�, and 
2
*�k ,e�

= �mn0�2tE
−1�−1
�k ,e�, where n0, 
�k ,e�, and ��k ,e� are, re-

spectively, the average number density, and Fourier trans-
forms of 
�r ,e� and ��r ,e�. It is known that 

1
*�k ,e� and


2
*�k ,e� are given, respectively, by

1
*�k,1� = 2�1 − j0�k� + 2j2�k��/�3k2� �7�

and

2
*�k,1� = 2�1 − j0�k� − j2�k��/�3k2� �8�

for elastic hard spherical particles, where jl�k� with l=0 or 2
is the lth-order spherical Bessel function �43–48�. Although
we do not know how 

1
*�k ,e� and 

2
*�k ,e� depend on e, the

explicit e-dependences of 
1
*�k ,e� and 

2
*�k ,e� are not impor-

tant in this paper. Therefore, we are omitting their explicit
forms from the discussion.

It should be noted that sheared corrections to the structure
factor or the pair-correlation function can be obtained within
this theoretical framework, though the equilibrium or the un-
sheared structure factor S0�k ,e��S�k ,e , �̇=0� should be de-
termined by another method. We adopt an approximate ex-
pression of the pair-correlation function for unsheared
granular liquids obtained by Lutsko �6�, which covers the
equilibrium pair correlation in the elastic limit �see Appendix
A�.

This set of Eqs. �1�–�5� is a reasonable starting point for
isothermal molecular liquids �e=1�, once we use appropriate
generalized transport coefficients and S0�k ,e=1�. However,
the validity of this set of equations in describing isothermal
sheared granular fluids might be controversial. Indeed, no-
body has used the generalized fluctuating hydrodynamics for
granular liquids, because we know that fluctuations cannot
be characterized by a Gaussian. In addition, there are no
explicit characteristics of granular liquids in the set of equa-
tions except for e-dependence of S�k ,e , �̇� and the general-
ized transport coefficients. Even when we use the hydrody-
namic equations for granular liquids, we should consider an
equation for the granular temperature.

Let us answer the above critical points to validate the
generalized fluctuating hydrodynamics in Eqs. �1�–�5�. First,
the granular temperature T is not a true hydrodynamic vari-
able but a relatively fast variable because of the collisional
energy loss in granular systems. Thus, we expect the fast
relaxation to a steady state of the temperature for sheared
granular liquids, which satisfies T��̇2 / �1−e2�. Second, an
isothermal situation is easily realized by the balance between
the viscous heating and the collisional energy loss. In par-
ticular, it is known that USF is stable for small and nearly
elastic systems under the Lees-Edwards boundary condition.
Even in physical situations, the heat conduction is not impor-
tant in the bulk region far from the boundary. In these situ-
ations, we may assume that sheared granular liquids are
nearly isothermal. We also indicate that our previous studies
clarify the formal similarities between sheared granular liq-
uids and sheared molecular liquids at a constant temperature
�16,17�. Through previous studies, we have recognized that
the most important issue is to determine S�k ,e , �̇� for granu-
lar liquids �17�, which can be determined within the frame-
work of the generalized fluctuating hydrodynamics. Third,
the fluctuating hydrodynamics has been used in describing
granular hydrodynamics for freely cooling cases �49�. Thus,
we believe that the set of Eqs. �1�–�5� can be used even for
sheared granular liquids. Although there are uncovered re-
gions of our approach in the description of granular liquids,
we expect that our approach can capture some aspects of
sheared granular liquids. The validity of the model will be
tested from the comparison between our theoretical predic-
tion and the direct simulation of granular assemblies.

III. LINEARIZED EQUATIONS AROUND UNIFORM
SHEAR FLOW AND THEIR SOLUTIONS

In this section, we analyze a set of the linearized equa-
tions around USF. As mentioned in the previous section, we
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assume that USF is stable. Thus, we only need to solve the
linearized equations. This section consists of two parts. In
the first part, we summarize the expression of the linearized
equations. In the second part, we explicitly write the solu-
tions of the linearized equations.

A. Linearized equations

Let us introduce the fluctuations of the hydrodynamic
fields 	n�r , t��n�r , t�−n0, 	u�r , t��u�r , t�−c�r , t� with
c��r�= �̇y	�,x, and the nondimensionalized vector z�r , t�,
whose Fourier transform is given by

ẑT�q,t� = „	n�q,t�,	ux�q,t�/�tE
−1�4�,

	uy�q,t�/�tE
−1�4�,	uz�q,t�/�tE

−1�4�… . �9�

Here, the Greek suffix � denotes the Cartesian component.

From Eqs. �1�, �2�, and �9�, we obtain the linearized evolu-
tion equation for z̃�k , t̄�� ẑ�q , t� as

��t̄ − �̇*kx
�

�ky
�z̃ + L · z̃ = R̃ , �10�

where the time, the wave number, and the shear rate have
been nondimensionalized by t= tEt̄, q=k /�, and �̇= �̇* / tE,
respectively. Here, the matrix L is expanded as

L = L0 + �̇*L1 + ¯ , �11�

where L0 and L1 are given, respectively, by

L0 = �
0 n0�3ikx n0�3iky n0�3ikz

p*ikx �1
* − 2

*�kx
2 + 2

*k2 �1
* − 2

*�kxky �1
* − 2

*�kxkz

p*iky �1
* − 2

*�kykx �1
* − 2

*�ky
2 + 2

*k2 �1
* − 2

*�kykz

p*ikz �1
* − 2

*�kzkx �1
* − 2

*�kzky �1
* − 2

*�kz
2 + 2

*k2
� , �12�

L1 = �
0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0
� �13�

with p
1
*� p*�k ,e�=AS0�k ,e�−1 and A�T / �mn0�5tE

−2�. The

random vector R̃ has four components

R̃1 = 0,

R̃�+1 = �mn0�4tE
−2�−1i�k����

R �k, t̄� , �14�

where �=1,2 ,3, respectively, correspond to x, y, and z. Al-
though the �̇ dependence of S�k ,e , �̇� should appear in L1,
we simply ignore such terms. The validity of this simplifica-
tion will be checked from a comparison of the results with
our simulation.

B. Solution of the linearized equations

It is straightforward to solve Eq. �10�. As mentioned in
Ref. �28�, its calculation can be simplified if we introduce the
transformation from the Cartesian coordinate to the oblique
coordinate to decompose the longitudinal modes and the
transverse mode. However, the obtained results in the ob-
lique coordinate are rather confusing, because of too many
suffixes. In addition, the results are basically the same as
those obtained by Lutsko and Dufty �28� with replacing the
transport coefficients by the generalized transport coeffi-
cients, and ignoring terms related with the fluctuation of the

temperature. In this paper, therefore, we only present the
final results in the Cartesian coordinate. The transformation
between the Cartesian coordinate and the oblique coordinate
is explained in Appendix B.

The solution of Eq. �10� can be formally represented by

z̃�k, t̄� = �
j=1

4 �
−�

t̄

ds�̃�j��k, t̄ − s�F�j�
„k̃��̇*�s − t̄��,s… , �15�

where

�̃�j��k, t̄� � ��j��k�exp�− �
0

t̄

d�̄��j��k̃��̇*�̄��� , �16�

F�j��k, t̄� � ��j��k� · R̃�k, t̄� �17�

with k̃��̄���kx ,ky + �̄kx ,kz�. Here, we have introduced the
right eigenvectors ��j��k�, the associated biorthogonal vec-
tors, i.e., the left eigenvectors ��j��k�, and the eigenvalues
��j��k� satisfying

�− 1�̇*kx
�

�ky
+ L� · ��j��k� = ��j��k���j��k� . �18�

We also note that ��j��k� and ��j��k� satisfy ��i��k� ·��j��k�
=	ij.

In order to obtain ��j��k�, ��j��k�, and ��j��k�, we use the
expansions

��j� = �0
�j� + �̇*�1

�j� + ¯ , �19�
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��j� = �0
�j� + �̇*�1

�j� + ¯ , �20�

��j� = �0
�j� + �̇*�1

�j� + ¯ , �21�

in terms of �̇*.
We should note that the perturbation in terms of �̇* is not

the expansion from an unsheared state of granular liquids.
Indeed, it is well known that properties of sheared granular
liquids differ completely from those of freely cooling granu-
lar liquids. In the case of sheared granular liquids, we obtain
the relation �̇*� �̇ /�T��1−e2 from the balance between
the viscous heating and the collisional energy loss. Thus, the
expansion in terms of �̇* can be regarded as that by small
inelasticity �50�.

Substituting Eqs. �19�–�21� into Eq. �18�, we obtain the
zeroth- and the first-order perturbations as

�L0 − �0
�j�1� · �0

�j��k� = 0, �22�

�L�0� − �0
�j�1� · �1

�j��k� + �− 1kx
�

�ky
+ L1 − �1

�j�1� · �0
�j��k� = 0.

�23�

Solving these equations, we obtain the eigenvalues

��1� = �+ + �̇*
kxky

k2 ��1��k� , �24�

��2� = �− + �̇*
kxky

k2 ��2��k� , �25�

��3� = 2
*�k,e�k2 − �̇*

kxky

k2 , �26�

��4� = 2
*�k,e�k2 �27�

within the approximation up to O��̇*�, where we have intro-
duced

�+ =
1

*�k,e�k2 + ��1
*�k,e�k2�2 − 4n0�3p*�k,e�k2

2
, �28�

�− =
1

*�k,e�k2 − ��1
*�k,e�k2�2 − 4n0�3p*�k,e�k2

2
, �29�

��1��k� �
�+

2

N+
2 +

n0�3k2

2N+
2 k�kp*�k,e�,

��2��k� �
�−

2

N−
2 +

n0�3k2

2N−
2 k�kp*�k,e� , �30�

and

N+
2 = − n0�3p*�k,e�k2 + �+

2, N−
2 = − n0�3p*�k,e�k2 + �−

2 .

�31�

Similarly, we obtain the right eigenvectors

��1�T =
1

N+
�ikn0�3,�+

kx

k
,�+

ky

k
,�+

kz

k
� , �32�

��2�T =
1

N−
�ikn0�3,�−

kx

k
,�−

ky

k
,�−

kz

k
� , �33�

��3� = ��3� + M�k���4�, �34�

��4� = ��4�, �35�

and the left eigenvectors

��1� =
1

N+
�ikp*�k,e�,�+

kx

k
,�+

ky

k
,�+

kz

k
� , �36�

��2� =
1

N−
�ikp*�k,e�,�−

kx

k
,�−

ky

k
,�−

kz

k
� , �37�

��3� = ��3�, �38�

��4� = − M�k���3� + ��4�, �39�

where we have used

��3�T = ��3� � �0,−
kykx

kk�

,
k�

k
,−

kykx

kk�

� , �40�

��4�T = ��4� � �0,
kz

k�

,0,−
kx

k�

� , �41�

and

M�k� = −
kkz

kxk�

tan−1�ky/k�� �42�

with k��k2−ky
2.

IV. CORRELATION FUNCTIONS

This section is the main part of this paper, in which we
present the explicit forms of correlation functions. This sec-
tion consists of two parts. The first part summarizes the gen-
eral results of correlation functions. In the second part, we
evaluate integrals included in correlation functions to extract
the long-range behaviors of correlations.

A. General results for correlation functions

Let us introduce the correlation functions C̃ii�k , t̄�, which
satisfy

z̃i�k, t̄�z̃i�k�, t̄�� = �2��3	3�k + k��C̃ii�k, t̄� . �43�

Note that we do not use Einstein’s sum rule for Latin sub-
scripts. Substituting Eq. �15� into this equation, we obtain

C̃ii�k, t̄� = �
0

�

dt̄�
l,m

�̃i
�l��k, t̄��̃i

�m��− k, t̄�F�lm��k̃��̇*t̄�� ,

�44�

where �̃i
�l��k , t̄� is the ith. component of �̃�l��k , t̄�, and

F�lm��k� satisfies
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F�l��k, t̄�F�m��k�, t̄��� = �2��3	3�k + k��	�t̄ − t̄��F�lm��k� .

�45�

From Eqs. �14�, �17�, and �36�–�39�, the explicit forms of
F�lm��k� are given by

F�11��k� = − 2Ak21
*�k,e�

�+
2

N+
2 ,

F�22��k� = − 2Ak21
*�k,e�

�−
2

N−
2 ,

F�12��k� = F�21��k, t̄� = − 2Ak21
*�k,e�

�+�−

N+N−
,

F�33��k� = 2Ak22
*�k,e� ,

F�44��k� = − �M�k�2 + 1�F�33��k� ,

F�34��k� = − F�43��k� = M�k�F�33��k� . �46�

Thus, we can calculate any spatial correlation functions.
Let us explicitly write the spatial density correlation

Cnn�r, t̄� � 	n�r + r�, t̄�	n�r�, t̄�� = �−6C11�r, t̄� �47�

and the spatial momentum correlation

Cpp�r, t̄� � p�r + r�, t̄� · p�r�, t̄��

� �mn0�/tE�2�C̃22�k, t̄� + C̃33�k, t̄�C̃44�k, t̄��
�48�

with the momentum density p�r , t̄�=mn�r , t̄�	u�r , t̄�. In Eq.
�48�, we adopt the approximation p�r , t̄��mnH	u�r , t̄�. With
the help of the inverse Fourier transform

Cnn�r, t̄� =� dq

�2��3 C̃nn�k, t̄�e−iq·r, �49�

Cpp�r, t̄� =� dq

�2��3 C̃pp�k, t̄�e−iq·r, �50�

and Eq. �44�, we obtain the steady solutions �see Appendixes
C and D�

C̃nn�k� = n0�S0�k,e� + �̇*�̃1�k�� , �51�

C̃pp�k� = �mn0�/tE�2�− D̃2�k� + D̃3�k� − D̃4�k�� , �52�

where C̃nn�k�� limt̄→�C̃nn�k , t̄�, and S0�k ,e� is the structure

factor for the unsheared case. D̃j�k� with j=2,3 ,4 in Eq.
�52� are given by

D̃2�k� = − A�1 + �̇*�̃2�k�� , �53�

D̃3�k� = A�1 + 2�̇*�̃3�k�� , �54�

D̃4�k� = − A�1 + 2�̇*�̃4�k�� . �55�

The derivation of Eqs. �51�–�55� and the explicit forms of

�̃ j�k , t̄� with j=1,2 ,3 ,4 are presented in Appendixes C and
D.

From Eqs. �49�–�55�, we finally obtain

Cnn�r� = n0
2�g0�r,e� − 1 + �̇*�1�r�� + n0	�r� , �56�

Cpp�r� =
T0

mn0
�3	�r� + �−3�̇*��2�r� + �3�r� + �4�r��� ,

�57�

where g0�r ,e� is the pair-correlation function for unsheared
cases, and

���r� =� dq

�2��3 �̃��k�e−iq·r. �58�

The determination of g0�r ,e� or S0�k ,e� for e�1 is highly
nontrivial. Indeed, we cannot keep any homogeneous cooling
state �HCS� without artificial controls of the systems. How-
ever, Lutsko �6� obtained an approximate expression of
g0�r ,e� for HCS. He also verified that his approximate ex-
pression works well from the comparison between the theory
and the simulation of HCS. As stated in Sec. II, we adopt his
expression in this paper �Appendix A�. We also note that the
structure of the liquids in Eq. �56� can be represented by the
linear contribution of the homogeneous terms and the
sheared term.

B. Long-range correlation

Let us demonstrate the existence of the long-range corre-
lation in Cnn�r� and Cpp�r�. Let the angular average of any

function f�r� be denoted by f̄�r���d�f�r� / �4��. As shown

in Appendix E, the asymptotic forms of �̄ j�r� �j=1,2 ,3�
satisfy

�̄1�r� � r−11/3, r � lc, �59�

�̄2�r� � r−11/3, r � lc, �60�

�̄3�r� � r−5/3, r � lc, �61�

�̄4�r� � r−5/3, r � lc, �62�

where lc�� /��̇*. Substituting these results into Eqs. �56�
and �57�, the long-range parts of C̄nn�r� and C̄pp�r�, respec-
tively, satisfy

C̄nn�r� � � r

lc
�−11/3

, r � lc, �63�

C̄pp�r� � � r

lc
�−5/3

, r � lc. �64�

This long-range correlation Cpp�r� is known for isothermal
sheared elastic fluids �28–30�, and has been verified in
sheared dilute granular fluids �38�.
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V. COMPARISON BETWEEN THEORY AND SIMULATION

To verify the validity of our theoretical prediction, we
perform the event-driven molecular-dynamics simulation for
three-dimensional hard spheres. In our simulation, the time
scale is measured by �0���m /T0, where T0 is the averaged
initial temperature. Particles are confined in a cell under the
Lees-Edwards boundary condition, in which each linear di-
mension is L. The number of particles is not fixed in our
simulation, but we control the system size L and the volume
fraction � as well as the restitution constant e. The initial
state at the time t=0 is the equilibrium state, and we will
show the correlation functions at t=20�0 for �=0.50 and

0.37, and t=40�0 for �=0.185 as C̄nn�r� and C̄pp�r�, where
the system is considered in a steady state. We also choose the
shear rate to keep the steady temperature unity in the dimen-
sionless unit, except for the data of Fig. 4, where the tem-
perature in the steady state is 1.0T0 for �̇=0.92�0

−1 or 4.0T0
for �̇=1.84�0

−1.

Figures 1–3 show the behaviors of C̄nn�r� for r�5� at
�=0.185, 0.37, and 0.50, respectively. The restitution coef-
ficient e is 0.83 for Fig. 1, and e is 0.90 for Figs. 2 and 3. The
solid line represents g0�r ,e� obtained by Lutsko �6� without
any fitting parameters. Although we omit contributions of

shear rate to C̄nn�r� because of its simplicity, the agreement
between the results of our simulation and our theory seems
to be perfect. Thus, it is hard to find any contributions of the
shear in the short-range structure of the density correlation
function, as is known in dense elastic liquids.

However, the above results do not mean that contributions
of the shear to the density correlation function are not impor-
tant. Indeed, we find the existence of a power-law tail which

might be consistent with the theoretical prediction C̄nn�r�
�r−11/3 in Eq. �63� for r�� �see Fig. 4 for �=0.185, and
�̇=0.92�0

−1 and 1.84�0
−1�. It should be noted that the shear

rate dependence of C̄nn�r� cannot be observed, because the
scaled shear rate �̇*� �̇ /�T��1−e2 in Eq. �56� is indepen-
dent of �̇ in the steady state. The range of the tail obeying a
power law is not wide enough to verify the theoretical pre-
diction in Fig. 4 because of the large statistical errors. How-
ever, as will be shown in Figs. 7 and 8, the numerical data

for C̄pp�r� are consistent with the theoretical prediction. To
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C
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n0
2

r / σ
1 2 3 4 5

0

0.4

0.8

FIG. 1. The density correlation function C̄nn�r� for the volume
fraction �=0.185 with L=89� and e=0.83 as a function of the
distance r. The solid line represents g0�r ,e� obtained by Lutsko �6�.
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FIG. 2. The density correlation function C̄nn�r� for the volume
fraction �=0.37 with L=72� and e=0.90 as a function of the dis-
tance r. The solid line expresses g0�r ,e� obtained by Lutsko �6�.
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FIG. 3. The density correlation function C̄nn�r� for the volume
fraction �=0.50 with L=32.5� and e=0.90 as a function of the
distance r. The solid line expresses g0�r ,e� obtained by Lutsko �6�.

10

(r / σ)
-11/3

g0(r,e) - 1

γ
.

= 1.84 τ-1
0

γ
.

= 0.92 τ-1
0

C
_

nn(r)____

n0
2

10
0

r / σ
1 100

10
-2

10
-4

FIG. 4. The double-log plot of C̄nn�r� for the volume fraction
�=0.185 with L=89�, and e=0.83 as a function of the distance r.
Here, the solid line is that for the homogeneous case obtained by
Lutsko �6�, and the plotted data are obtained in the case of �̇
=0.92�0

−1 and 1.84�0
−1.
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confirm the quantitative accuracy of our theory in C̄nn�r�, we
need more extensive simulations to reduce the statistical er-
rors.

Figures 5 and 6 show the behavior of C̄nn�r� for �=0.37
and 0.50, respectively. We use e=0.90 and L=72� for �
=0.37, and e=0.90 and L=32.5� for �=0.50. Although we
can identify the existence of a power-law tail, it is hard to
verify whether the tail satisfies r−11/3 for �=0.37 and 0.50
because of the large statistical errors.

The long-range momentum correlation function that satis-
fies r−5/3 can be observed more clearly than the case of the
density correlation function as shown in Figs. 7 and 8. Figure
7 is the result of our simulation for �=0.37 and e=0.90.
Figure 8 shows the result for �=0.50 and e=0.90. Although

there is an apparent finite-size effect, C̄pp�r� can be a univer-
sal function of r /L, and decays faster than the power-law
function for r�0.4L �see Figs. 7 and 8�. We will have to

check whether the oscillation of C̄pp�r� in small r can be
understood by our theory. To obtain the complete forms of

C̄nn�r� and C̄pp�r�, we need to solve the eigenvalue problem
of the inelastic Enskog operator and determine 

1
*�k ,e� and


2
*�k ,e� explicitly. This will be our future work.

In this paper, we focus mainly on the results of sheared
granular liquids, because granular liquids are more nontrivial
than sheared isothermal elastic liquids, in which particles
collide with each other without any loss of energy. We also
perform the molecular-dynamics simulation for sheared elas-
tic liquids with the velocity scaling thermostat to keep a
constant temperature. Figures 9 and 10 are the results of the
momentum correlation function of sheared elastic liquids
with �=0.093 and 0.37, respectively. These results also sup-

port the power law C̄pp�r��r−5/3 even in the elastic case,

although C̄pp�r� has the negative value for �=0.37 due to the
backscattering effect. Although the existence of a power law

C̄pp�r��r−5/3 has been believed �28�, this is the first time, to
our knowledge, that the existence of such a tail has been
verified from the molecular-dynamics simulation.

VI. DISCUSSION AND CONCLUSION

Now let us discuss our result. We should discuss the va-
lidity of the generalized fluctuating hydrodynamics. �i� Can

1
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FIG. 5. The double-log plot of C̄nn�r� for the volume fraction
�=0.37 with L=72�, e=0.90 as a function of the distance r. Here,
the solid line is that for the homogeneous case obtained by Lutsko
�6�.

(r / σ)
-11/3

g0(r,e) - 1

Simulation

r / σ

C
_

nn(r)____

n0
2

10
0

10
-2

10
-4

101 100

FIG. 6. The double-log plot of C̄nn�r� for the volume fraction
�=0.50 with L=32.5�, e=0.90 as a function of the distance r.
Here, the solid line is that for the homogeneous case obtained by
Lutsko �6�.
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FIG. 7. The double-log plot of C̄pp�r� for the volume fraction
�=0.37 with L /�=36, 72 and e=0.90 as a function of the distance
r. Here, a is a fitting parameter, which is 0.4 for L=36� or 1.0 for
L=72�.
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FIG. 8. The double-log plot of C̄pp�r� for the volume fraction
�=0.50 with L=32.5� and e=0.90 as a function of the distance r.
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the noise be Gaussian? The answer is no. However, the non-
Gaussian nature may not be important in our framework,
because we only discuss the two-point correlation functions.
When we discuss higher correlation functions, our theoreti-
cal treatment should be insufficient. �ii� What are contribu-
tions of the energy fluctuations? It might be important to
include the effects of the temperature fluctuation for denser
cases. When we take into account such fluctuations, we must
solve a cubic equation for the eigenvalues satisfying Eq. �18�
to obtain the explicit form of C̃ii�k�. The analytic expression
of the solution is, however, rather complicated. Hence, we do
not take into account the fluctuations of the kinetic tempera-
ture. This treatment may be justified as long as the USF is
stable. Indeed, the temperature is immediately relaxed to be
uniform. �iii� The contribution of inelastic collisions also ap-
pears through the inelastic Enskog operator for granular
gases. At present, we have not solved the eigenvalue problem
of the inelastic Enskog operator. In this sense, our treatment
in this paper is far from complete. The complete treatment
will be discussed elsewhere.

Serious contributions of inelastic collisions appear in
large systems, because USF is unstable for larger and highly
inelastic systems. It should be noted that the shear flow is
induced by the Lees-Edwards boundary condition. Using this
boundary condition, USF is actually realized as shown in

Fig. 11, which is in contrast to the shear flow obtained by
moving a physical wall �13�. However, our long-time simu-
lation for larger systems deviates from the theoretical predic-
tion. In such a system, the linearized generalized hydrody-
namics cannot be used, and the power-law correlation
function may disappear. This nonstationary tendency ex-
pected from unstable USF in larger systems can be observed
in our simulation. Figure 12 shows the time evolution of

C̄pp�r� for the system sizes L=36� and 72� in the case of
e=0.90 and �=0.37. It is clear that the result of a smaller
system �L=36�� converges, but the result of a larger system
�L=72�� does not converge. Although we have not identified
the reason why we could not obtain the converged results in
larger systems, it is likely to take place of the evolution of
nonuniform structure �13,51–53�.

It should be noted that the instability of USF can be re-
duced under gravity, which is not included in this paper
�5,10�. Hence, we expect that the predicted long-range cor-
relation can be observed in experiments for sheared granular
materials �18�, where the stable shear flow is realized.

In this paper, we demonstrate that the framework based on
the generalized hydrodynamics is useful to determine the
structure factor or the pair-correlation function. This result is
significant in the following sense. First, we clarify the sig-
nificant contribution of the shear to the structure factor of
dense isothermal liquids, which is usually ignored in the pa-
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FIG. 9. The double-log plot of C̄pp�r� for the volume fraction
�=0.093 with L=112� and e=1.0 at t=40�0 as a function of the
distance r.
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FIG. 10. The double-log plot of C̄pp�r� for the volume fraction
�=0.37 with L=72� and e=1.0 at t=30�0 as a function of the
distance r.
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FIG. 11. The profile of the velocity u�y� along the flow direction
as a function of the position y for �=0.37, e=0.90, and L=32�
with t=20�0.
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FIG. 12. The time dependence of C̄pp�r� for the volume fraction
�=0.37 at t=20�0 ,40�0 ,60�0 for L=36� and 72� in the case of
e=0.90.
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pers to discuss glassy behaviors of sheared liquids �54,55�.
Second, the determination of the structure factor gives
complementary information to MCT for sheared granular liq-
uids �17�.

In conclusion, we apply the generalized fluctuating hydro-
dynamics to isothermal sheared moderate dense liquids for
both elastic cases and inelastic cases. The theory predicts that
the density correlation function and the momentum correla-
tion function, respectively, obey power laws r−11/3 and r−5/3.
Our theory can be valid even for the short-range scale for
��r�5�. The density correlation function for the short-
range scale can be approximated by the theory introduced by
Lutsko �6�. These results have been verified through a com-
parison with the simulation.
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APPENDIX A: APPROXIMATE EXPRESSION OF g0(r ,e)

In this appendix, we show the outline of the unsheared
pair-correlation function obtained by Lutsko �6�, who devel-
oped the generalized mean spherical approximation in de-
scribing a homogeneous cooling process of granular liquids.

The approximate expression of g0�e ,r� is obtained from
the inverse Laplace transform of the function G�t� satisfying

G�t� = �
0

�

dre−trrg0�r,e� , �A1�

where G�t� is given by

G�t� =
tF�t�e−t

1 + 12�F�t�e−t �A2�

with the volume fraction ��n0�3� /6. Here, we introduce
F�t� as

F�t� =
− �1 + A1t + A2t2�

12��S0 + S1t + S2t2 + S3t3 + S4t4�
, �A3�

where S0=1, S1=A1−1, S2=A2−A1+1 /2, S3=−A2+A1 /2
− �1+2�� / �12��, and S4=A2 /2− �1+2�� / �12��A1+ �2
+�� / �24�� with

A1 =
1

2
+� �� − 1�2 − �6�g0��,e� + 1�Z

12���2 + �� − 2g0��,e��� − 1�2�
,

A2 = g0��,e�
�1 + 2��A1 − �2 + ��/2

1 + 6�g0��,e�
. �A4�

In Eq. �A4�, the pair-correlation function g0�� ,e� at contact
is given by the equilibrium pair-correlation function at con-

tact geq���= �1−� /2� / �1−��3 as g0�� ,e�= �1
+e�geq��� / �2e�. In addition, Z is given as

Z = �1 +
1 + e

2
�Zeq

−1 − 1��−1

, �A5�

where

Zeq = � �

�n
P̄�−1

, �A6�

with P̄�n�1+4�geq���� /m.

APPENDIX B: TRANSFORMATION BETWEEN
CARTESIAN COORDINATE AND OBLIQUE COORDINATE

In the calculation of Eqs. �24�–�39�, �46�, and �52�, it is
convenient to use the oblique coordinate, where the vector ẑ
of Eq. �9� in the Cartesian coordinate is transformed to the
vector z̄ in the oblique coordinate as

ẑ = Tz̄ , �B1�

where the matrix T is given by

T = �
1 0 0

0 kx/k − kykx/�kk�� kz/k�

0 ky/k k�/k 0

0 kz/k − kykz/�kk�� − kx/k�

� . �B2�

Here, we note that the second, third, and fourth components
of z̄ are given by z̄2=	u�, z̄3=	ut, and z̄4=	us, where 	u�

=e� ·	u, 	ut=et ·	u, 	us=es ·	u, and

u = 	u�e� + 	utet + 	uses �B3�

with

e�
T = �kx/k,ky/k,kz/k� ,

et
T = „− kykx/�kk��,k�/k,− kykz/�kk��… ,

es
T = �kz/k�,0,− kx/k�� .

From this transformation, the right eigenvectors and the
left eigenvectors in the oblique coordinate are given, respec-
tively, by

�̄�1�T =
1

N+
�ikn0�3,�+,0,0� , �B4�

�̄�2�T =
1

N−
�ikn0�3,�−,0,0� , �B5�

�̄�3�T = „0,0,1,M�k�… , �B6�

�̄�4�T = �0,0,0,1� , �B7�

and

�̄�1� =
1

N+
„ikp*�k,e�,�+,0,0… , �B8�
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�̄�2� =
1

N−
„ikp*�k,e�,�−,0,0… , �B9�

�̄�3� = �0,0,1,0� , �B10�

�̄�4� = „0,0,− M�k�,1… . �B11�

APPENDIX C: EXPLICIT REPRESENTATION OF C̃nn(k)

In this appendix, we explicitly derive Eq. �51�. C̃nn�k� is

related to C̃11�k� as C̃nn�k�=�−3C̃11�k�. Using Eq. �44�, we
obtain

C̃11�k� = �
0

�

dt̄�
l,m

�̃1
�l��k, t̄��̃1

�m��− k, t̄�F�lm��k̃��̇*t̄�� = 4An0
2�6�

0

�

dt̄e−�0
t̄ ds̄

1
*�k̃��̇*s̄��k̃��̇*s̄�2

e−�0
t̄ ds̄�̇*�kxk̃y��̇*s̄�/k̃��̇*s̄�2����1��k��̇*s̄��+��2��k��̇*s̄���

�
k2

N+�k�N−�k�

�+�k��̇*s̄���−�k��̇*s̄��1
*�k��̇*s̄��k��̇*s̄�2

N+�k��̇*s̄��N−�k��̇*s̄��
+ 2An0

2�6�
0

�

dt̄e−�0
t̄ ds̄�

+
*�k̃��̇*s̄��e−�0

t̄ ds̄�̇*�2kxk̃y��̇*s̄�/k̃��̇*s̄�2���1��k��̇*s̄��

�
k2

N+�k�2

�+�k��̇*s̄��21
*�k��̇*s̄��k��̇*s̄�2

N+�k��̇*s̄��2
+ 2An0

2�6�
0

�

dt̄e−�0
t̄ ds̄�

−
*�k̃��̇*s̄��e−�0

t̄ ds̄�̇*�2kxk̃y��̇*s̄�/k̃��̇*s̄�2���2��k��̇*s̄��

�
k2

N−�k�2

�−�k��̇*s̄��21
*�k��̇*s̄��k��̇*s̄�2

N−�k��̇*s̄��2
. �C1�

From the relations

d

dt̄
e−�0

t̄ ds̄
1
*�k̃��̇*s̄��k̃��̇*s̄�2

= − 1
*�k̃��̇*t̄��k̃��̇*t̄�2e−�0

t̄ ds̄
1
*�k̃��̇*s̄��k̃��̇*s̄�2

, �C2�

d

dt̄
e−�0

t̄ ds̄�
+
*�k̃��̇*s̄�� = − �+

*�k̃��̇*t̄��e−�0
t̄ ds̄�

+
*�k̃��̇*s̄��, �C3�

d

dt̄
e−�0

t̄ ds̄�
−
*�k̃��̇*s̄�� = − �−

*�k̃��̇*t̄��e−�0
t̄ ds̄�

−
*�k̃��̇*s̄��, �C4�

Eq. �C1� can be rewritten as

C̃11�k� = An0
2�6	4k2�+�k��−�k�

N+�k�2N−�k�2 +
k4�+�k�1

*�k,e�

N+�k�4 +
k4�−�k�1

*�k,e�

N−�k�4 

+ An0

2�6�
0

�

dt̄
4k2�+�k��−�k�

N+�k�N−�k�
e−�0

t̄ ds̄
1
*�k̃��̇*s̄��k̃��̇*s̄�2 d

dt
�e−�0

t̄ ds̄�̇*�kxk̃y��̇*s̄�/k̃��̇*s̄�2����1��k��̇*s̄��+��2��k��̇*s̄���G12�k��̇*t̄���

+ An0
2�6�

0

�

dt̄
k4�+�k�1

*�k,e�

N+�k�2 e−�0
t̄ ds̄�

+
*�k̃��̇*s̄�� d

dt
�e−�0

t̄ ds̄�̇*�2kxk̃y��̇*s̄�/k̃��̇*s̄�2���1��k��̇*s̄��G11�k��̇*t̄���

+ An0
2�6�

0

�

dt̄
k4�−�k�1

*�k,e�

N−�k�2 e−�0
t̄ ds̄�

−
*�k̃��̇*s̄�� d

dt
�e−�0

t̄ ds̄�2kxk̃y��̇*s̄�/k̃��̇*s̄�2���2��k��̇*s̄��G22�k��̇*t̄��� , �C5�

where we have introduced

G12�k� =
�+�k��−�k�
N+�k�N1�k�

, �C6�

G11�k� =
�+�k�1

*�k,e�k2

N+�k�2 , �C7�

G22�k� =
�−�k�1

*�k,e�k2

N−�k�2 . �C8�

It is possible to obtain the simpler expression for C̃11�k�
from the relation �4k2�+�− / �N+

2N−
2�+�+

1
*�k ,e�k4 /N+

4

+�−
1
*�k ,e�k4 /N−

4�= ��3n0p*�k ,e��−1=S0�k ,e� / ��3n0A�, and
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d

dt
�e−�0

t̄ ds̄�̇*�kxk̃y��̇*s̄�/k̃��̇*s̄�2����1��k��̇*s̄��+��2��k��̇*s̄���G12�k��̇*t̄���

= �̇*e−�0
t̄ ds̄�̇*�kxk̃y��̇*s̄�/k̃��̇*s̄�2����1��k��̇*s̄��+��2��k��̇*s̄���H12�k̃��̇*t̄�� ,

�C9�

d

dt
�e−�0

t̄ ds̄�̇*�2kxk̃y��̇*s̄�/k̃��̇*s̄�2���1��k��̇*s̄��G11�k��̇*t̄���

= �̇*e−�0
t̄ ds̄�̇*�2kxk̃y��̇*s̄�/k̃��̇*s̄�2���1��k��̇*s̄��H11�k̃��̇*t̄�� ,

�C10�

d

dt
�e−�0

t̄ ds̄�̇*�2kxk̃y��̇*s̄�/k̃��̇*s̄�2���2��k��̇*s̄��G22�k��̇*t̄���

= �̇*e−�0
t̄ ds̄�2kxk̃y��̇*s̄�/k̃��̇*s̄�2���2��k��̇*s̄��H22�k̃��̇*t̄�� ,

�C11�

with

H12�k� = k
dG12�k�

dk
− ���1��k� + ��2��k��G12�k� , �C12�

H11�k� = k
dG11�k�

dk
− 2��1��k�G11�k� , �C13�

H22�k� = k
dG22�k�

dk
− 2��2��k�G22�k� . �C14�

Substituting Eqs. �C9�–�C14� into Eq. �C5�, we obtain

C̃11�k� = n0�3�S0�k,e� + �̇*�̃1�k�� , �C15�

where we have introduced

�̃1�k� = An0�3�
0

�

dt̄
4k2H12�k̃��̇*t̄��

N+�k�N−�k�
kxk̃y��̇*t̄�

k̃��̇t̄�2
e−�0

t̄ s̄���1��k̃��̇*s̄��+��2��k̃��̇*s̄���

+ An0�3�
0

�

dt̄
k2H11�k̃��̇*t̄��

N+�k�2

kxk̃y��̇*t̄�

k̃��̇*t̄�2
e−2�0

t̄ ds̄��1��k̃��̇*s̄�� + An0�3�
0

�

dt̄
k2H22�k̃��̇*t̄��

N−�k�2

kxk̃y��̇*t̄�

k̃��̇*t�2
e−2�0

t̄ ds̄��2��k̃��̇*s̄��.

�C16�

We thus obtain Eq. �52� from Eq. �C15� with C̃nn�k , t̄�
=�−3C̃11�k , t̄�.

APPENDIX D: EXPLICIT REPRESENTATION OF C̃pp(k)

In this appendix, we also explicitly derive Eq. �52�. The

momentum correlation C̃pp�k� can be written as

C̃pp�k� = �mn0�/tE�2�C̃22�k� + C̃33�k� + C̃44�k�� , �D1�

where

C̃22�k� + C̃33�k� + C̃44�k�

= �
0

�

dt̄�
l,m

�
�=2,3,4

�̃�
�l��k, t̄��̃�

�m��− k, t̄�F�lm��k̃��̇*t̄��

= �
0

�

dt̄�
l,m

�
�=2,3,4

�− 1��+1�̄�
�l��k, t̄��̄�

�m��− k, t̄�F�lm�

��k̃��̇*t̄�� . �D2�

Here, to obtain Eq. �D2� we have used the relation

�̃�l��k, t̄� = T · �̄�l��k, t̄�

and

��=2,3,4T���k�T���− k� = �− 1����=2,3,4T��
−1 �k�T���k�

= �− 1��+1	��.

Introducing

D̃��k� � �
0

�

dt̄�
l,m

�̄�
�l��k, t̄��̄�

�m��− k, t̄�F�lm��k̃��̇*t̄�� ,

�D3�

we can rewrite C̃pp�k� as

C̃pp�k� = �mn0�/tE�2�− D̃2�k� + D̃3�k� − D̃4�k�� . �D4�

From Eq. �D3�, D̃2�k� can be rewritten as
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D̃2�k� = 4A�
0

�

dt̄e−�0
t̄ ds̄

1
*�k̃��̇*s̄��k̃��̇*s̄�2

e−�0
t̄ ds̄�̇*�kxk̃y��̇*s̄�/k̃��̇*s̄�2����1��k��̇*s̄��+��2��k��̇*s̄���

�
�+�k��−�k�
N+�k�N−�k�

�+�k��̇*s̄���−�k��̇*s̄��1
*�k��̇*s̄��k��̇*s̄�2

N+�k��̇*s̄��N−�k��̇*s̄��

+ 2A�
0

�

dt̄e−�0
t̄ ds̄�

+
*�k̃��̇*s̄��e−�0

t̄ ds̄�̇*�2kxk̃y��̇*s̄�/k̃��̇*s̄�2���1��k��̇*s̄�� �+�k�2

N+�k�2

�+�k��̇*s̄��21
*�k��̇*s̄��k��̇*s̄�2

N+�k��̇*s̄��2

+ 2A�
0

�

dt̄e−�0
t̄ ds̄�

−
*�k̃��̇*s̄��e−�0

t̄ ds̄�̇*�2kxk̃y��̇*s̄�/k̃��̇*s̄�2���2��k��̇*s̄�� �−�k�2

N−�k�2

�−�k��̇*s̄��21
*�k��̇*s̄��k��̇*s̄�2

N−�k��̇*s̄��2
. �D5�

From the parallel procedure to that in Appendix C, we obtain

D̃2�k� = − A	4�+�k�2�−�k�2

N+�k�2N−�k�2 +
�+�k�4

N+�k�4 +
�−�k�4

N−�k�4
 − A�̇*�̃2�k� , �D6�

where

�̃2�k� = �
0

�

dt̄
4�+�k��−�k�H12�k̃��̇*t̄��

N+�k�N−�k�
kxk̃y��̇*t̄�

k̃��̇*t̄�2
e−�0

t̄ ds̄���1��k̃��̇*s̄��+��2��k̃��̇*s̄���

+ �
0

�

dt̄
�+�k�2H11�k̃��̇*t̄��

N+�k�2

kxk̃y��̇*t̄�

k̃��̇*t̄�2
e−2�0

t̄ ds̄��1��k̃��̇*s̄�� + �
0

�

dt̄
�1�k�2H22�k̃��̇*t̄��

N−�k�2

kxk̃y��̇*t̄�

k̃��̇*t̄�2
e−2�0

t̄ ds̄��2��k̃��̇*s̄��. �D7�

From 4�+�k�2�−�k�2 / �N+�k�2N−�k�2�+�+�k�4 /N+�k�4

+�−�k�4 /N−�k�4=1, we find that D̃2�k� is represented by Eq.
�53�.

From Eq. �D3�, we obtain

D̃3�k� = 2A�
0

�

dt̄e−�0
t̄ ds̄2

2
*�k̃��̇*s̄��k̃��̇*s̄�2

e�0
t̄ ds̄�̇*2�kxk̃y��̇*s̄�/k̃��̇*s̄�2�

�2
*�k��̇*s̄��k��̇*s̄�2. �D8�

From the identities

d

dt̄
e−�0

t̄ ds̄
2
*�k̃��̇*s̄��k̃��̇*s̄�2

= − 2
*�k̃��̇*t̄��k̃��̇*t̄�2e−�0

t̄ ds̄
2
*�k̃��̇*s̄��k̃��̇*s̄�2

�D9�

and

e�0
t̄ ds̄�̇*�kxk̃y��̇*s̄�/k̃��̇*s̄�2� =

k̃��̇*s̄�
k2 , �D10�

we find that D̃3�k� is expressed as Eq. �54� with

�̃3�k� = �
0

�

dt̄
kxk̃y��̇*t̄�

k2 e−�0
t̄ ds̄2

2
*�k̃��̇*s̄��k̃��̇*s̄�2

. �D11�

From Eq. �D3�, we obtain

D̃4�k� = − 2A�
0

�

dt̄	M2�k�
k̃��̇*s̄�2

k2

− 2M�k�M�k̃��̇*s̄��
k̃��̇*s̄�

k
+ M�k̃��̇*s̄��2 + 1


� e−�0
t̄ ds̄2

2
*�k̃��̇*s̄��k̃��̇*s̄�2

2
*�k��̇*t̄��k��̇*t̄�2. �D12�

With the aid of Eq. �D9�, we confirm that D̃4�k� can be
represented by Eq. �55�, where

�̃4�k� = �
0

�

dt̄	 kxk̃y��̇*t̄�

k̃��̇*t̄�2
F�k, t̄�

−
kz

k̃��̇*t̄�

F�k, t̄�e−�0

t̄ ds̄2
2
*�k̃��̇*s̄��k̃��̇*s̄�2

, �D13�

and F�k , t�=M�k̂�t��− k̂�t�M�k� /k.
Finally, substituting eqs. �53�–�55� into Eq. �D1� with Eq.

�D2�, we obtain the explicit representation of C̃pp�k� as Eq.
�52�.

APPENDIX E: EVALUATION OF THE ASYMPTOTIC

FORM OF �̄j(r)

In this appendix, we evaluate the asymptotic form of �̄ j�r�
for r� lc.
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1. Asymptotic form of �̄1(r)

We note that �̄1�r� can be separated into three parts,

�̄1�r� = �̄11�r� + �̄12�r� + �̄13�r� , �E1�

where

�̄11�r� =
A

n0�6 � dk

�2��3

sin�kr/��
kr/�

��
0

�

dt̄
4k2H12�k̃��̇*t̄��

N+�k�N−�k�
kxk̃y��̇*t̄�

k̃��̇*t̄�2

�e−�0
t̄ s̄���1��k̃��̇*s̄��+��2��k̃��̇*s̄���, �E2�

�̄12�r� =
A

n0�6 � dk

�2��3

sin�kr/��
kr/�

��
0

�

dt̄
k2H11�k̃��̇*t̄��

N+�k�2

kxk̃y��̇*t̄�

k̃��̇*t̄�2

�e−2�0
t̄ ds̄��1��k̃��̇*s̄��, �E3�

�̄13�r� =
A

n0�6 � dk

�2��3

sin�kr/��
kr/�

��
0

�

dt̄
k2H22�k̃��̇*t̄��

N−�k�2

kxk̃y��̇*t̄�

k̃��̇*t�2

�e−2�0
t̄ ds̄��2��k̃��̇*s̄��. �E4�

Let us introduce lc�� /��̇*, r*�r / lc, and the transformation

t̄=� / �̇*, s̄=�� / �̇*, k=��̇*K /r*=�K /r, and k̃���
=��̇*K̃��� /r*. By using the new variables, Eqs. �E2�–�E4�
can be rewritten as

�̄11�r� = r*−5 A

n0�3lc
3 � dK

�2��3

sin K

K

��
0

�

d�
4K2H12���̇*K̃���/r*�

N+���̇*K/r*�N−���̇*K/r*�

KxK̃y���

K̃���2

�e−�0
����̇*−1���1����̇*K̃����/r*�+��2����̇*K̃����/r*��, �E5�

�̄12�r� = r*−5 A

n0�3lc
3 � dK

�2��3

sin K

K

��
0

�

d�
K2H11���̇*K̃���/r*�

N+���̇*K/r*�2

KxK̃y���

K̃���2

�e−2�0
�d���̇*−1��1����̇*K̃����/r*�, �E6�

�̄13�r� = r*−5 A

n0�3lc
3 � dK

�2��3

sin K

K

��
0

�

d�
K2H22���̇*K̃���/r*�

N−���̇*K/r*�2

KxK̃y���

K̃���2

�e−2�0
�d���̇*−1��2����̇*k̃����/r*�. �E7�

Introducing the transformations �=r*2/3Y and ��=r*2/3Y� to

extract the asymptotic forms for r*�1, �̄1j�r� �j=1,2 ,3� can
be rewritten as

�̄11�r� = r*−13/3 A

n0�3lc
3 � dK

�2��3

sin K

K

��
0

�

dY
4K2H12���̇*K̃�r*2/3Y�/r*�

N+���̇*K/r*�N−���̇*K/r*�

KxK̃y�r*2/3Y�

K̃�r*2/3Y�2

�e−�0
�dY��̇*−1r*2/3���1����̇*K̃�r*2/3Y��/r*�+��2����̇*K̃�r*2/3Y��/r*��,

�E8�

�̄12�r� = r*−13/3 A

n0�3lc
3 � dK

�2��3

sin K

K

��
0

�

dY
K2H11���̇*K̃�r*2/3Y�/r*�

N+���̇*K/r*�2

KxK̃y�r*2/3Y�

K̃�r*2/3y�2

�e−2�0
�dY��̇*−1r*2/3��1����̇*K̃�r*2/3Y��/r*�, �E9�

�̄13�r� = r*−13/3 A

n0�3lc
3 � dK

�2��3

sin K

K

��
0

�

dY
K2H22���̇*K̃�r*2/3Y�/r*�

N−���̇*K/r*�2

KxK̃y�r*2/3Y�

K̃�r*2/3Y�2

�e−2�0
�dY��̇*−1r*2/3��2����̇*k̃�r*2/3Y��/r*�, �E10�

where the functions included in Eqs. �E8�–�E10� have the
asymptotic forms for r*�1,

K̃y�r̄2/3Y� � r*2/3�YKx + O�r*−2/3�� , �E11�

K̃�r*2/3Y��2 � r*4/3�Y�2Kx
2 + O�r*−2/3�� , �E12�

H12���̇*K̃�r*2/3Y�/r*� �
1

2
+ O�r*−2/3� , �E13�

H11���̇*K̃�r*2/3Y�/r*� �
i��̇*1

*�0,t�

2c0
Y�Kx�r*−1/3 + O�r*−2/3� ,

�E14�

H22���̇*K̃�r*2/3Y�/r*� � −
i��̇*1

*�0,t�

2c0
y�Kx�r*−1/3

+ O�r*−2/3� , �E15�
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N+���̇*K/r*� � �2�̇*Kic0r*−1 + O�r*−2� , �E16�

N−���̇*K/r*� � �2�̇*Kic0r*−1 + O�r*−2� , �E17�

e−�0
�dY��̇*−1r*2/3��1����̇*K̃�r*2/3Y��/r*�

� e−ic0�̇*−1/2�0
Ydy��Kx�Y�r*1/2� K

�Kx�r*2/3Y

� e−�0
ydY�

1
*�0,t�Kx

2Y�2�1 + O�r*−2/3�� , �E18�

e−�0
�dY��̇*−1r*2/3��2����̇*K̃�r*2/3Y��/r*�

� eic0�̇*−1/2�0
YdY��Kx�Y�r*1/2� K

�Kx�r*2/3Y

� e−�0
YdY�

1
*�0,t�Kx

2Y�2�1 + O�r*−2/3�� , �E19�

with c0
2�n0�3p*�0,e�. Substituting these relations into Eqs.

�E8�–�E10�, we obtain

�̄11�r� = J11r*−11/3 + O�r*−13/3� ,

��̄12�r�� = ��̄13�r�� = J12r*−4 + O�r*−14/3� , �E20�

where we have introduced

J11 =
A

�̇*c0n0�3lc
3 � dK

�2��3

sin K

K
�

0

�

dY
1

Y2

K

�Kx�
e−2

1
*�0�Y3/3,

�E21�

J12 =
A

4n0�3lc
3��̇*c0

3 � dK

�2��3

sin K

K
�

0

�

dY
K

Y
e−2

1
*�0�Y3/3.

�E22�

Thus, the asymptotic form of �̄1�r� can be represented by Eq.
�59�.

2. Asymptotic form of �̄2(r)

Similarly, �̄2�r� is given by summation of the three terms

�̄2�r� = �̄21�r� + �̄22�r� + �̄23�r� , �E23�

where

�̄21�r� = �−3� dk

�2��3

sin�kr/��
kr/�

��
0

�

dt̄
4�+�k��−�k�H12�k̃��̇*t̄��

N+�k�N−�k�
kxk̃y��̇*t̄�

k̃��̇*t̄�2

�e−�0
t̄ ds̄���1��k̃��̇*s̄��+��2��k̃��̇*s̄���, �E24�

�̄22�r� = �−3� dk

�2��3

sin�kr/��
kr/�

��
0

�

dt̄
�+�k�2H11�k̃��̇*t̄��

N+�k�2

kxk̃y��̇*t̄�

k̃��̇*t̄�2

�e−2�0
t̄ ds̄��1��k̃��̇*s̄��, �E25�

�̄23�r� = �−3� dk

�2��3

sin�kr/��
kr/�

��
0

�

dt̄
�1�k�2H22�k̃��̇*t̄��

N−�k�2

kxk̃y��̇*t̄�

k̃��̇*t̄�2

�e−2�0
t̄ ds̄��2��k̃��̇*s̄��. �E26�

As in the case of the previous subsection, from the transfor-
mations t̄=r*2/3Y / �̇*, s̄=r*2/3Y� / �̇*, and k=��̇*K /r*, we
obtain

�̄21�r� =
r*−7/3

�̇*lc
3 � dK

�2��3

sin K

K
�

0

�

dY
4�+���̇*K/r*��−���̇*K/r*�H12���̇*K̃�r*2/3Y�/r*�

N+���̇*K/r*�N−���̇*K/r*�

�
KxK̃y�r*2/3Y�

K̃�r*2/3Y�2
e−�0

YdY��̇*−1r*2/3���1����̇*K̃�r*2/3Y��/r*�+��2����̇*K̃�r*2/3Y��/r*��, �E27�

�̄22�r� =
r*−7/3

�̇*lc
3 � dK

�2��3

sin K

K
�

0

�

dY
�+���̇*K/r*�2H11���̇*K̃�r*2/3Y�/r*�

N+���̇*K/r*�2

KxK̃y�r*2/3Y�

K̃�r*2/3Y�2

�e−2�0
YdY��̇*−1r*2/3��1����̇*K̃�r*2/3Y��/r*�, �E28�
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�̄23�r� =
r*−7/3

�̇*lc
3 � dK

�2��3

sin K

K
�

0

�

dY
�−���̇*K/r*�2H22���̇*K̃�r*2/3Y�/r*�

N−���̇*K/r*�2

KxK̃y�r*2/3Y�

K̃�r*2/3Y�2

�e−2�0
YdY��̇*−1��2�r*2/3���̇*K̃�r*2/3Y��/r*�. �E29�

From Eqs. �E11�–�E19� and Eqs. �E27�–�E29�, we obtain

�̄21�r� =
c0n0�3

A
J11r*−11/3 + O�r*−13/3� , �E30�

��̄22�r�� = ��̄23�r�� =
c0n0�3

A
J12r*−4 + O�r*−14/3� .

�E31�

We thus find the asymptotic form of �̄2�r� is given by Eq.
�60�.

3. Asymptotic Form of �̄3(r)

�̄3�r� can be represented by

�̄3�r� = �−3� dk

�2��3

sin�kr/��
kr/� �

0

�

dt̄
kxk̃y��̇*t̄�

k2

�e−�0
t̄ ds̄2

2
*�k̃��̇*s̄�,0�k̃��̇*s̄�2

. �E32�

From the transformations t̄=� / �̇*, s̄=�� / �̇*, and k
=��̇*K / r̄, we can rewritten Eq. �E32� as

�̄3�r� = �̇*−1lc
−3r*−3� dK

�2��3

sin K

K
�

0

�

d�
KxK̃y���

K2

�e−�0
�d��2

2
*���̇*K̃���/r*�K̃���2/r*2

. �E33�

Introducing the other transformations �=r*2/3y and ��
=r*2/3y�, we obtain

�̄3�r� = �̇*−1lc
−3r*−7/3� dK

�2��3

sin K

K
�

0

�

dy
KxK̃y�r*2/3y�

K2

� e−�0
ydy�2

2
*���̇*K̃�r*2/3y��/r*��K̃�r*2/3y��2/r*4/3�. �E34�

We should note that

2
*���̇*K̃�r*2/3y��

r*
� � 2

*�0� + O�r*−4/3� �E35�

can be used for r*�1 from Eq. �E11�. Using this equation
and Eq. �E12�, we obtain

�̄3�r� = J3r*−5/3 + O�r*−2/3� , �E36�

where

J3 = �̇*−1lc
−3� dK

�2��3

sin K

K
�

0

�

dY
Kx

2Y

K2 e−2
2
*�0�Kx

2Y3/3.

�E37�

Therefore, the asymptotic form of �̄3�r� is given by Eq. �61�.

4. Asymptotic form of �̄4(r)

�̄4�r� can be rewritten as

�̃4�k� = �−3� dk

�2��3

sin�kr/��
kr/�

��
0

�

dt̄F4�k, t̄�e−�0
t̄ ds̄2

2
*�k̃��̇*s̄��k̃��̇*s̄�2

, �E38�

where we have introduced F4�k , t�= �
kxk̂y��̇*t̄�

k̂��̇*t̄�2
F�k , t̄�

−
kz

k̂��̇*t̄�
�F�k , t̄�. From the transformations t̄=r*2/3Y / �̇*, s̄

=r*2/3Y� / �̇*, and k=��̇*K /r*, we obtain

�̃4�k� = �̇*−1lc
−3r*−7/3� dK

�2��3

sin K

K

��
0

�

dYF4���̇*K/r*,r*2/3Y/�̇*�

�e−�0
YdY�2

2
*���̇*K̃�r*2/3Y��/r*��K̃�r*2/3Y��2/r*4/3�.

�E39�

Substituting the asymptotic expression

F4���̇*K/r*,r*2/3Y/�̇*� � ��KZ

2K�

+
�Kx�
K

M�K��2

r*2/3Y

�E40�

for r*�1, Eqs. �E11� and �E12� into Eq. �E39�, we obtain

�̄4�r� = J4r*−5/3 + O�r*−2/3� , �E41�

where

J4 = �̇*−1lc
−3� dK

�2��3

sin K

K

��
0

�

dY��KZ

2K�

+
�Kx�
K

M�K��2

Ye−2
2
*�0�Kx

2Y3/3.

�E42�

Hence, we find that the asymptotic form of �̄4�r� is given by
Eq. �62�.
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